Generalized approximate spin projection calculations of effective exchange integrals of the CaMn4O5 cluster in the S1 and S3 states of the oxygen evolving complex of photosystem II.

نویسندگان

  • H Isobe
  • M Shoji
  • S Yamanaka
  • H Mino
  • Y Umena
  • K Kawakami
  • N Kamiya
  • J-R Shen
  • K Yamaguchi
چکیده

Full geometry optimizations followed by the vibrational analysis were performed for eight spin configurations of the CaMn4O4X(H2O)3Y (X = O, OH; Y = H2O, OH) cluster in the S1 and S3 states of the oxygen evolution complex (OEC) of photosystem II (PSII). The energy gaps among these configurations obtained by vertical, adiabatic and adiabatic plus zero-point-energy (ZPE) correction procedures have been used for computation of the effective exchange integrals (J) in the spin Hamiltonian model. The J values are calculated by the (1) analytical method and the (2) generalized approximate spin projection (AP) method that eliminates the spin contamination errors of UB3LYP solutions. Using J values derived from these methods, exact diagonalization of the spin Hamiltonian matrix was carried out, yielding excitation energies and spin densities of the ground and lower-excited states of the cluster. The obtained results for the right (R)- and left (L)-opened structures in the S1 and S3 states are found to be consistent with available optical and magnetic experimental results. Implications of the computational results are discussed in relation to (a) the necessity of the exact diagonalization for computations of reliable energy levels, (b) magneto-structural correlations in the CaMn4O5 cluster of the OEC of PSII, (c) structural symmetry breaking in the S1 and S3 states, and (d) the right- and left-handed scenarios for the O-O bond formation for water oxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding Two Different Structures in the Dark Stable State of the Oxygen‐Evolving Complex of Photosystem II: Applicability of the Jahn–Teller Deformation Formula

Tanaka et al. (J. Am. Chem. Soc., 2017, 139, 1718) recently reported the three-dimensional (3D) structure of the oxygen evolving complex (OEC) of photosystem II (PSII) by X-ray diffraction (XRD) using extremely low X-ray doses of 0.03 and 0.12 MGy. They observed two different 3D structures of the CaMn4O5 cluster with different hydrogen-bonding interactions in the S1 state of OEC keeping the sur...

متن کامل

Oxidation states of the manganese cluster during the flash-induced S-state cycle of the photosynthetic oxygen-evolving complex.

The Mn K-edge x-ray absorption spectra for the pure S states of the tetranuclear Mn cluster of the oxygen-evolving complex of photosystem II during flash-induced S-state cycling have been determined. The relative S-state populations in samples given 0, 1, 2, 3, 4, or 5 flashes were determined from fitting the flash-induced electron paramagnetic resonance (EPR) multiline signal oscillation patte...

متن کامل

Simulation of the isotropic EXAFS spectra for the S2 and S3 structures of the oxygen evolving complex in photosystem II.

Most of the main features of water oxidation in photosystem II are now well understood, including the mechanism for O-O bond formation. For the intermediate S2 and S3 structures there is also nearly complete agreement between quantum chemical modeling and experiments. Given the present high degree of consensus for these structures, it is of high interest to go back to previous suggestions conce...

متن کامل

Theoretical illumination of water-inserted structures of the CaMn4O5 cluster in the S2 and S3 states of oxygen-evolving complex of photosystem II: full geometry optimizations by B3LYP hybrid density functional.

Full geometry optimizations of several inorganic model clusters, CaMn(4)O(4)XYZ(H(2)O)(2) (X, Y, Z = H(2)O, OH(-) or O(2-)), by the use of the B3LYP hybrid density functional theory (DFT) have been performed to illuminate plausible molecular structures of the catalytic site for water oxidation in the S(0), S(1), S(2) and S(3) states of the Kok cycle for the oxygen-evolving complex (OEC) of phot...

متن کامل

Detection of an intermediary, protonated water cluster in photosynthetic oxygen evolution.

In photosynthesis, photosystem II evolves oxygen from water by the accumulation of photooxidizing equivalents at the oxygen-evolving complex (OEC). The OEC is a Mn4CaO5 cluster, and its sequentially oxidized states are termed the Sn states. The dark-stable state is S1, and oxygen is released during the transition from S3 to S0. In this study, a laser flash induces the S1 to S2 transition, which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 24  شماره 

صفحات  -

تاریخ انتشار 2014